45 research outputs found

    Solving Large Sparse Lyapunov Equations on Parallel Computers

    Full text link
    Abstract. This paper describes the parallelization of the low-rank ADI iteration for the solution of large-scale, sparse Lyapunov equations. The only relevant operations involved in the method are matrix-vector prod-ucts and the solution of linear systems. Experimental results on a cluster, using the SuperLU library, show the performance of this approach

    A bootstrap method for sum-of-poles approximations

    Get PDF
    A bootstrap method is presented for finding efficient sum-of-poles approximations of causal functions. The method is based on a recursive application of the nonlinear least squares optimization scheme developed in (Alpert et al. in SIAM J. Numer. Anal. 37:1138–1164, 2000), followed by the balanced truncation method for model reduction in computational control theory as a final optimization step. The method is expected to be useful for a fairly large class of causal functions encountered in engineering and applied physics. The performance of the method and its application to computational physics are illustrated via several numerical examples

    Numerical solution of generalized Lyapunov equations

    No full text
    Two efficient methods for solving generalized Lyapunov equations and their implementations in FORTRAN 77 are presented. The first one is a generalization of the Bartels--Stewart method and the second is an extension of Hammarling's method to generalized Lyapunov equations. Our LAPACK based subroutines are implemented in a quite flexible way. They can handle the transposed equations and provide scaling to avoid overflow in the solution. Moreover, the Bartels--Stewart subroutine offers the optional estimation of the separation and the reciprocal condition number. A brief description of both algorithms is given. The performance of the software is demonstrated by numerical experiments

    Numerical solution of generalized Lyapunov equations

    Get PDF
    Two efficient methods for solving generalized Lyapunov equations and their implementations in FORTRAN 77 are presented. The first one is a generalization of the Bartels--Stewart method and the second is an extension of Hammarling's method to generalized Lyapunov equations. Our LAPACK based subroutines are implemented in a quite flexible way. They can handle the transposed equations and provide scaling to avoid overflow in the solution. Moreover, the Bartels--Stewart subroutine offers the optional estimation of the separation and the reciprocal condition number. A brief description of both algorithms is given. The performance of the software is demonstrated by numerical experiments

    Accelerating Band Linear Algebra Operations on GPUs with Application in Model Reduction

    No full text

    Lyapunov and Sylvester Matrix Equations

    No full text
    corecore